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AN APPROXIMATE THEORY FOR HIGH-FREQUENCY
VIBRATIONS OF ELASTIC PLATESt

P. C, Y. LEE and Z, NIKODEM

Department of Civil and Geological Engineering, Princeton University, Princeton, New Jersey

Abstract-Two-dimensional equations of successively higher orders of approximation for elastic, isotropic
plates are deduced from the three-dimensional theory ofelasticity by a series expansion in terms ofsimple thickness­
modes for infinite plates. For each order of approximation from the zeroth up to the fourth, kinetic and strain
energy densities, stress-strain relations and displacement equations of motion for both flexural and extensional
vibrations are presented. Dispersion curves for real and imaginary as well as complex wave numbers in an infinite
plate are explored in detail and compared with the solution of the Rayleigh-Lamb frequency equation from the
three-dimensional theory.

1. INTRODUCTION

A GENERAL procedure for deducing approximate two-dimensional equations for elastic
plates from the three-dimensional theory of elasticity was introduced by Mindlin [1]
based on the series-expansion methods of Poisson [2] and Cauchy [3], and the integral
method of Kirchhoff [4]. In the same paper, the procedure was applied to a power series
expansion and the approximate two-dimensional equations of orders zero and one were
obtained. It has been shown that the classical theory of extensional vibrations of thin
plates [5] is equivalent to Mindlin's zero order equations. The plate equations for flexural
vibrations by Mindlin [6] and Uflyand [7], the equilibrium equations by Reissner [8, 9],
two-dimensional analogues of the equations of flexural vibrations for beams by Bresse [10],
Timoshenko [11, 12], and Kane and Mindlin's [13] extensional equations for high frequency
are either equivalent to or contained in the first order equations of Mindlin, However, in
approximations of second and higher orders, inertia terms corresponding to various
modes are coupled in the equations of motion due to the lack of orthogonality among the
terms of the power series. Using an expansion in series of Legendre polynomials, Mindlin
and Medick [14] obtained the equations of extensional vibrations of the second order
approximation, for which the coupling of inertia terms is eliminated. As a result of more
complicated formulae for the derivatives, when terms higher than the second order are
included, complex mathematical forms are still encountered in approximations of the
third or higher orders.

In the present paper, using an expansion in a series of simple thickness-modes for
infinite plates, two-dimensional equations are deduced from the three-dimensional theory
of elasticity by Mindlin's general procedure. Because of the orthogonality of simple
thickness-modes and the simple form for the derivatives, approximations of successively
higher orders can be obtained with no increase in complication. For the approximate
equations, theorems of uniqueness and orthogonality are established.
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Since the simple thickness-modes are the exact limits of the solutions of the three­
dimensional theory as wave lengths approach infinity, the cut-off frequencies at zero wave
number from the approximate equations are always "exact", and hence the matching of
the dispersion curves of the approximate and three-dimensional theories is expected to be
very close for long wave lengths and for all frequencies. The results turn out to be as
expected except for the lowest flexural and the lowest extensional branches. To improve
the matching for these two branches, two correction coefficients, (X I and (X2, are introduced
into the strain and kinetic energy densities for plates.

To extract equations of various orders of approximation from the infinite set, two
procedures for series truncation are used. For the zero order approximation, the truncation
procedure of Poisson [2J and Mindlin [IJ is employed. For any higher Nth order approxi­
mation (N > 0), a different procedure for series truncation is used for simplicity. For each
and every order of approximation from the zeroth up to the fourth order, the energy
densities, stress-strain relations and displacement equations of motion are presented.
Then the dispersion relations for either flexural motion or extensional motion for an
infinite plate are obtained from the approximate equations, and the dispersion curves
for real and imaginary as well as complex wave numbers are explored in detail and com­
pared with those from the Rayleigh-Lamb [15, 16J frequency equation of the three­
dimensional theory. The close agreement of the results indicates that the applicable range
of frequencies for each Nth order theory is 0 :s; 0 :s; N + 1/2, where the dimensionless
frequency 0 = w/(nv2/2b). By studying face-shear vibrations of an infinite plate, it is
found that the approximate equations always yield the "exact" dispersion relations.

A method for generating the dispersion relation of any higher order theory is described
and applied to the fifth and sixth order approximations.

2. EXPANSION IN SERIES OF THICKNESS-MODES

Consider an infinite plate bounded by a pair of parallel planes X 2 = ±b as referred to
a rectangular coordinate system xh = 1,2,3). Series of vibrational modes which are
independent of Xl' X3 coordinates and correspond to traction-free faces were discussed
in detail by Mindlin [IJ and are called simple thickness-modes. The displacement com­
ponents corresponding to these modes may be written as

u. = A. cos nn( 1- X2) eiWn1 (1)
J ~ 2 b

where n = 1,2,3, ... , W n = nnvJi2b are the resonant frequencies of the infinite plate
vibrating in thickness-stretch modes, while Wn = mW2/2b are the resonant frequencies of
thickness-shear modes and VI = ~[(A+2J1)/pJ and V2 = ~(J1/p) are the dilatational and
equivoluminal wave velocities, A, J1 being Lame constants.

By expanding the general displacement components in an infinite series with their
x2-dependence expressed by the simple thickness-modes, one may write

~ nn (n)
UjX I,X 2 ,X3 ,t) = n~o cos 2 (1-11)Uj (X I ,X3 ,t) (2)

where 11 = x 2/b, ujx l , X3, t) are functions of Xl' x 3 and t only, and are called the nth order
displacements although they represent the amplitudes ofthe nth thickness-mode distribution
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ofdisplacements across the thickness of the plate. The distributions ofdisplacements across
the thickness associated with u}n) for n = 0, 1,2 are illustrated in Fig. 1.

Stress equations of motion

From the variational equation of motion [17J, one obtains

f (r··· - pu . t )c5u .dV = 0lJ,l J, t J
V

(3)

where d V, the volume element, can be replaced by bdYf dA with dA = dx 1 dX3 representing
the area element of the plate, By substitution of (2) into (3), integration with respect to Yf

j=2 j=3

:} !
:} 4:
hhI s--u(3)cos 37r (1- x2)

I 2 b ]
FIG. 1. Components of displacement.
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over the interval [-1, 1] and use of the following identities:

II sin mn (1 -1/) sin n
2
n (l -1/) d1/ = b

mn
-1 2

II mn mr
cos -(1-1/) cos -2(1-1/) d1/ = bmn

- I 2
and

II mn nn {a,
-1 sin 2 (1-1/)cos 2 (1-1/)d1/ = Amn = 4m

(mz-nZ)n'
one obtains

f 00 nn 1
" (r(n). - _fIn! +- F(n) - pu(n) )bu(n) dA = °
L. 'J,' 2b ZJ b J J,It J

An=O

where

m+n even

m+n odd

(4)

(5)

(6)
I

I
(n) _ nn

rij = rijcos-(I-1/)d1/,
-I 2

[
nn JlFt);: rzjcos 2 (1-1/) -1 = rzi b)-(-ltrzi- b).

It may be noted that the quantities defined above are functions of XI' X3 and t only. rlj)
and flj) are called nth order components ofstress but with cos(nn/2)(1-1/) and sin(2n/2)(1 -1/)
as weighting functions respectively, while F}n) are called the nth order components offace­
traction. Since (5) must hold for arbitrary A and for every arbitrary bU}n) and if in addition
it is assumed that the integrand of (5) is continuous, then the quantity in the parentheses
must be zero. Hence the nth order stress equations ofmotion are

nn 1
r!~). - - fIn! +- F(n) = pu(n)

'J,' 2b ZJ b J J,tt •
(7)

Equations (7) are similar in form to Mindlin's approximate plate equations. In the
equation of motion obtained by Mindlin [1] by using an expansion in a power series, an
infinite series appears on the right hand side and no series appears on the left hand side;
while in the analogous equations obtained by Mindlin and Medick [14], using an expansion
in a series ofLegendre polynomials, a finite series of terms depending on the order n appears
instead of the second term on the left hand side of (7), and no series appears on the right
hand side. Hence (7) has a simpler form than the aforementioned equations, especially when
n becomes large.

Strains and stress-strain relations
Inserting (2) into the strains in the three-dimensional theory

cij = l(Uj,i+Ui,),

one obtains

(8)

(9)
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(10)

(11)

and they are called the nth order components ofstrain.
In the three-dimensional theory, the constitutive relations for elastic and isotropic

materials are
(12)

where A, J1. are the Lame constants. Substitution of (9) into (12), then, in turn, into the first
two equations of (6) yields, respectively, the following nth order stress-strain relations

00

(n) _ 1~ (n)+2 (n)+ " A (1 ~ -(m)+2 -(m»)
'ij - /LUilkk J1.Gij L. mn /LUij-Gkk J1.Gij

m=O

00

-(n) _ 1~ -(n) +2 -(n) + " A (1 ~ (m) +2 (m»)
'ij - /LUij-Gkk J1.Gij L. nm /LUilkk J1.Gij.

m=O

(13)

(14)

It may be seen that two sets of stresses and strains are introduced in the present paper
and that they are denoted by ,Ii), Gli) and iIi), eli), respectively. The stress components ,Ii),
as can be seen by the definition, are similar to Mindlin's nth order components ofstress [18].
Furthermore, if (7) are compared with the analogous equations by Mindlin [18], one may
note that iIi) play similar roles to the ,li- 1

) of Mindlin's theory. The strain components
defined in (10) have the same form as the strains in the three-dimensional theory. However
the G~n~ are identically equal to zero. An inspection of(l1) reveals that eli) = 0 for i,j = 1,3
and the three non-zero components e~nJ are proportional to u~n) for j = 1,2, 3. The strain
components el'? and e~2+ 1) for n = 0, 1,2 are illustrated in Fig. 2, in which the e~2+ 1) take
the place of the vanishing e~i .

Energy densities

Let U = 'ij-G;)2 be the strain energy density in the three-dimensional theory; the plate­
strain energy density is then defined as

U =; flU d17· (15)

By inserting (9) into above and using (10) and (11), one finds

or
(16)

(17)

One may note that

(n) _ au
'ij - '" (n)'

UGij

-In) _ au
'ij - ",-(n)'

ueij
(18)
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FIG. 2. Components of strain.

Similarly, the plate-kinetic energy density is defined by

J
t 1 0Ci

K == K dn = -p '\' u!n)u!n)" 2 L. l,t I,t
-I n=O

(19)

where K = PUi,tUi,t/2 is the kinetic energy density in the three-dimensional theory,

3. UNIQUENESS AND ORTHOGONALITY

A theorem analogous to Neumann's [19] for the uniqueness of solutions of the approxi­
mate equations may be obtained, Form the following expression from (7):

It I J 0Ci nndt '\' (r!~). - - i(n~ +F(n)/b - pul.!'l )u(n1dA = 0L. IJ.I 2b 2J J J,lt J,t .
to A n=O
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Use the two-dimensional divergence theorem, (16) and (19), and note that in (17)

587

and

An energy equation results:

{ [K(t 1)+ D(t 1)] dA = { [K(to) + D(to)] dA

+ft
1

dtJ. f Vi'!'yu)~ldS+ftl dtf b- 1 f F)nlutldA, (20)
to Ye n=O to A n=O

where C is the edge around the plate and Vi are the components of the unit outward normal
to C in the plane of the plate. By the usual argument based upon the positive definiteness
of K and D, the sufficient conditions for a unique solution are obtained in the absence of
discontinuities and singularities:

1. Initial values of U)nl and u)~l for each and every order of n at each point of the plate.
2. One member of each of the products of F~n)u~nl, F~lu~nl and F~lu~l for each and every

order of n and at each point of the plate.
3. One member of each of the products ,~~lu~nl, ,~~lu~nl and ,~1u~nl for each and every

order of n and at each point on the edge C, where r, s are referred to as the normal and
tangential directions to the edge C.

It may be seen that the stress components i!~? do not appear in anyone of the above
stated conditions.

Consider two sets of solutions

U)nl = U)nla(x 1, X3) eiwat

U(nl = U<!llb(X X) eiwbt
J J 1, 3 ,

which satisfy the homogeneous equations

(21)

and

(22)

respectively. A theorem concerning the orthogonality between functions U)nla and U)nlb may
be established in a manner similar to that of the Clebsch theorem [20]. Multiplying (21)
by +U)nlb and (22) by - U)nla, respectively for every n, summing and integrating over the
area of the plate and in the resulting expression replacing ,!~lu(n) terms by (,!~lu(nl) .- ,!n)·u(nl

, 'IJ ),1 IJ J ' I 1),1 J

and finally applying the divergence theorem, one obtains

+(i!jlae!jlb _i!jlbe!jla)] dA = - p(w; -w~) f t U)nlaU)nlb dA.
An=O

On the left hand side of the above equation, the first term vanishes for homogeneous
conditions on the edge and the second term vanishes identically, as can be verified by the



588 P. C. Y. LEE and Z. NIKODEM

direct substitution of(13), (14). Therefore, if W a #- W b,

f I u}nlau}nlb dA = O.
A n=O

(23)

4. TRUNCATION PROCEDURES

By the series expansion of the displacement, as described in Section 2, the three­
dimensional equations of elasticity, i.e. (3), (8) and (12), are replaced by an infinite set of
two-dimensional plate equations given by (6), (7), (11), (12) and (13), (14). To extract approxi­
mate theories of various orders from this infinite set of equations, truncation procedures
for the series are described below.

For the zero order approximation

The same procedure used by Poisson [2J and Mindlin [IJ for zero order approximation
is employed here by setting

(a) u\nl = 0, u~l = 0, n > 0

(b) u~) = 0, n > 1 (24)

(c) ,~od = 0 and u~l.1 = o.

For the Nth order approximation (N > 0)

The truncation procedure for the Nth order theory with N any positive integer is to set

n> N (25)

and to ignore the stress components ,lil and ·m) for n > N.

5. CORRECTION COEFFICIENTS !Xl AND !X Z

By comparing the dispersion curves, for straight-crested waves propagating in the Xl

direction, from the approximate plate theory oforder N (which is obtained by the procedure
described in the preceding section and will be presented in detail in Section 6), with those
from the Rayleigh-Lamb frequency equation [15, 16J of the three-dimensional theory, it is
found that the approximate theory always yields the "exact" cut-off frequencies and two
sets of dispersion curves match quite well for frequencies up to Q = N + 1/2 and wave
numbers Izi $; N + 1, where the dimensionless frequency and wave number are defined by

;i(
7WZ)Q=w 2b' z = ~ /(2

n
b) (26)

except for the lowest flexural and the lowest extensional branches.
To adjust the energy densities, given in (17) and (19), for better matching of the lowest

flexural and extensional branches, two correction factors !X 1 and!X2 are introduced as below.

2U = A(Bl?lB}~)+Bll)BW+ ...)+2jt(BlJlBlJl+!X~BlJlBlJ>+...)

+BIJl[A I 0!X 1(Ae5 iiW + 2jtslJl) + A30(Ae5ijSW+ 2jtslP + J

+ BlJ>[A 21 (Ae5ijSW+ 2jtsljl)+ A41 (Ae5ijSW + 2jtslj» + J

+BIJl[A dAe5iAV + 2jtslJ» + AdAe5iiW + 2jtsW+ J

+ ...
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+ 1("(~)"<,0)+ ,,(~),,<.~)+ )+211(,,(0)"(9)+ ,,(~),,(~)+ )
/I. "II "J] "II "JJ • • • f'" "IJ "IJ "IJ "IJ •••

+s!J)[A lO(XI(A.bijeIJ) + 2/1eIJ») + AdA.bij4i) + 2/1elJ>)+ ]

+S!J)[A21 (A.b iAV + 2/lC!J») + A23(A.b ifW + 2/lClj») + ]

+ ... (27)
and

(28)
where

p = cos2(in/2).

It can be seen that (X I is introduced into [J for the strains elJ) and s!J) which are associated
with the coefficient A lO , while (X2 is introduced for the eWeiY term in [J and u~~M~1 term
inK.

It will be shown in the next section that in order to make the slope ofthe lowest flexural
branch in the first order theory and the slope of the lowest extensional branch in the second
order theory coincide, respectively, with those from the three-dimensional theory when
both the frequency and wave number approach zero, the value of (Xl must be taken as

Cl:I = n/4. (29)

In order to make the phase velocities of the lowest flexural and the lowest extensional
branches approach that ofthe Rayleigh surface waves [21] as both the values ofthe frequency
and wave number become large, Cl: 2 must be set equal to the real root of the following
equation [6]

Cl:~ - 8Cl:~ + 8(3 - 2/k2
)Cl:2 -16(1-I/P) = °

for Rayleigh surface waves, where k2 = vVv~ = 2(1- v)/(I- 2v). The values of (X2 for
different values of Poisson's ratio are given below.

TABLE 1

v 0·00

0·764

0·100

0·798

0·200

0·830

0·250

0·845

0·300

0·860

0·350

0·874

0·400

0·888

0·500

0·963

The adjusted energy densities [J and K are still positive definite if, in addition to the
usual requirements, 3A. +2/1 > 0, /1 > 0, one requires that Cl:2 > 0. After the energy densities
are adjusted, the strain-displacement equations remain the same. The stress equations of
motion derived from [J and K by the variational principle also remain unchanged except
that the inertia term pu~~lt is replaced by pu~~lt/(X2. The stress components derived from the
adjusted [J by (18) for the first five orders are given as follows.

444
,(9) = u(9)+-(X aV)+-O'P)+-0'!5)+

IJ IJ n I IJ 3n IJ 5n IJ •••

8 16
,!~) = ,..!~)--;;:E)+-;;:(~)+

IJ V IJ 5n VI) 7n v,) •••

(30)
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and
(30 continued)

(32)

(31)

(33)

where
(J"\~) = Ab· -e(n) + 2J1e\~) a=\~) = Ab· .e(n) + 2J1e\~)

IJ - IJ kk IJ ' IJ - IJ kk IJ •

The stress-displacement relations may be obtained by inserting (10) and (11) into (32)
and then, in turn, into (30) and (31). For ease of reference and in order to avoid repetition
later the stress-displacement relations for the first five orders are listed below, in which
the subscript a takes on only the values 1 and 3 and

e(n) == u~!t + U~!3 .

(34)

(35)
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Second order

2 (1 9 25 )t(2) = A e(2)+211U<2)+-A __u(1)+_u(3) __u(5)+ no sum
aa Y" a,a b 3 2 5 2 21 2 ' ., ,

2 (1 9 25 )t(2) = A e(2)+~A+211) __U<I)+_U(3)+_U(5)+.
22 1)' Y" 3 2 5 2 21 2 .. ,

2(1 9 25 )t(2) = IIU(2) +-11 __u(1)+_U(3)+_U(5)+
2a Y" 2,a bY" 3 a 5 a 21 a ... ,

t(2) = "(U(2) + u<2»)
13 Y" 3,1 1,3'

n 8 (1 1 1 )i(2) = ~~A+211)U(2)+-A -e(1)--e(3)--e(5) + ...
22 b' Y" 2 n 3 5 21 '

-(2) _ n (2) 8 (1 (1) 1 (3) 1 (5) )
t2a - bJ.lUa +-;f "3U2 ,a-sU2,a- 21 u2 ,a+ ....

Third order

8 (1 4 1 )t(3) = A e(3)+ 2I1U(3)+-A -_u(1)+_u(3)+_U(5)+ no sum
aa r a,a b 5 2 7 2 3 2 • " ,

8 (1 4 1 )t(3) = A e(3)+~A+211) --U(1)+_U(3) __U(5)+
22 1)' Y" 5 2 7 2 3 2 ... ,

8 (1 4 1 )t(3) = IIU(3) +-11 --U(1)+_u<3)+_U(5)+
2a Y" 2,a bY" 5 a 7 a 3 a . .. ,

t\3j = Jl-(u~~~ + u\~~),

3n 12 (1 1 1 )i(3) = ~A+211)U(3)+-A _e(0)+_e(2) __ e(4)+
22 ib" Y" 2 n 9 5 7 . .. ,

-(3) _ 3n (3) 12 (1 (0) 1 (2) 1 (4) )
t2a - 2bJl-Ua +--:;;Jl- 9U2,a+SU2,a-7u2,a+ ....

Fourth order

2 (1 9 25 )t(4) = A e(4)+ 211u<4)+-A --u(1)_-u(3)+_u(5)+ no sum
aa Y" a,a b 15 2 7 2 9 2 .. , ,

2 (1 9 25 )t(4) = A e(4) +--JA + 211) --u(1) __U(3)+_U(5)+
22 b' Y" 15 2 7 2 9 2 ... ,

2 (1 9 25 )t(4) = IIU(4) +-11 --u(1) __U(3)+_U(5)+
2a Y" 2,a bY" 15 a 7 a 9 a ... ,

t(4) = "(U(4) + u(4»)
13 Y" 3,1 1,3 ,

2n 16 ( 1 1 1 )i(4) = ~(A+211)U(4)+-A -e(1)+-e(3) __ e(5)+
22 b' Y" 2 n 15 7 9 . " ,

-(4) _ 2n (4) 16 (1 (1) 1 (3) 1 (5) )
'2a - bJl-Ua +-;rJl- 15U2,a+7u2.a-9u2,a+ '" .

591

(36)

(37)

(38)
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Fifth order

,(S) = Ae(S)+2I1U(S)+~A( _~U(2)_~U(4)+ ) no sumaa ,... a,a b 21 2 9 2 ,

,~sd = Ae(S)+tA+2J.L)( - 2\U~2)_~U~4)+ ),

,(S) = IIU(S) +~II( _~U(2)_~U(4)+ )2a I'"" 2,a bl'"" 21 a 9 a ' .. ,

,\sd = J.L(U~~)I +U\~~),

511: 20 ( 1 1 I )f(S) = ~A+211)u(S)+-A -e(0)+-e(2)+-e(4)+ '
22 6' I'"" 2 11: 25 21 9 ,.,

-(S) _ 511: (S) 20 (1 (0) 1 (2) I (4) )
'2a - 2bJ.LUa +-;J.L 25u2,a+21u2,a+9u2,a+'" .

6. PLATE THEORIES OF SUCCESSIVELY HIGHER ORDERS

(39)

By the truncation procedures described in Section 4 and with correction factors in­
troduced in D and K according to Section 5, plate theories of successive orders from the
zeroth up to the fourth order are obtained and will be presented in this section.

In the equations of motion for isotropic plates, the extensional motions or deformations
symmetric with respect to the middle plane of the plate, such as displacement components
utI when n + j = even, are separable from the flexural or anti-symmetric motions, i.e.
uJn) when n + j = odd. Therefore in an Nth order theory, there are two sets of equations of
motion, one for extensional motion and the other for flexural motion. In this paper the
dispersion relations for extensional vibrations in even order theories (N = even) and for
flexural vibrations in odd order theories (N = odd) are presented. For each order ap­
proximation, the dispersion curves for real and imaginary as well as complex wave numbers
are explored in detail and compared with those from the three-dimensional theory. Since
their behavior depends upon Poisson's ratio, three values, v = 0·25,0,30 and 0·35 are used
for the computation. The complex branches from the three-dimensional equation used for
comparison in the present paper were obtained by Potter and Leedham [22].

Zero order theory

For the zero order approximation, according to (24) one has the energy densities

strain components

(40)

and stress equations of motion

-(I) _ 3'J 5: (I) 5: (I»)
Gij - 4b"U 2iUj +U2jUi , (41)

where p = cos2U11:/2).

,(9). +F(O)/b = pIX - Pu(O)
l),l) 2 ),tt> (42)
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From the first equation of (30), the stress-strain relations are

(0) , ~ (0) 2 (0) 4 (' ~ -(1)+2 -(1))
Tij = AUi/3kk + Jleij + --a 1 AUi/3kk Jleij'

11:

593

(43)

(44)

By setting T~od = 0 according to (24), one can solve from (43) for u~1)

e(2) = !:.u(1) = __A_(~)(e(O)+e(1»)
22 b 2 A.+2Jl 41X

1
11 33 .

Substitution of (44) back into (43) yields the stress-strain relations for the zero order
approximation

or

T\Ol = X(e\ol + e~O~)+ 2Jle\01,

T~o~ = X(e\ol + e~O~) + 2Jle~0~,

(45)

(46)

where X = 2JlA./(A. +2Jl). The displacement equations of motion for zero order approxima­
tions can be obtained by inserting (46) into (42):

JlV2U~0) + (X + Jl) e~2) + F~O)/b = pu~~it

JlV2u~0)+F~0)/b = pu~~lr1IX2
(47)

where a = 1, 3 and V2 = (of + o~).

Equations (47) are equivalent to Mindlin's zero order plate equations [IJ while the
first two in (47) are equivalent to the classical extensional theory [5J for thin plates (by
Poisson [2J and by Cauchy [3J). The third equation, as pointed out by Mindlin, is not useful
by itself and should be included into the first order flexural theory.

Consider a straight-crested wave propagating in the x 1 direction:

u~O) = u~O) = O.

Inserting the above into (47) with F)O) = 0, one finds

ill = ~J[E/p(l-v2)J or Q = zJ[2/(I-v)J (48)

which agrees with the slope of the lowest extensional branch in the three-dimensional
theory as both ill and ~ approach zero.

If one considers SH waves or face-shear vibrations by setting F)O) = 0 and

in (47), one obtains

ill = ~J(Jl/p) or Q = z

which coincides with the result for SH waves in the three-dimensional theory.

(49)
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(50)

First order theory

According to the truncation procedure given by (25), for first order theory one sets
N = 1; then only the displacement, stress and strain components of orders less than or
equal to 1 (= N) will be retained. Thus, the energy densities become

2U(1) = r\<?)e\<?)+r!1)e\I)+V~)e\!)
'J 'J 'J 'J 'J 'J

2]((1) = p((J.-Pu\O)u\O)+u\!lu\!»
2 l.t lit l.t l,t

and the stress equations of motion are
1r\<?)-+-F(O) = P(J.-pu(O)

'J,' b J 2 J,tt

(51)

(52)

(53)

The stress-strain relations and the stress-displacement relations for the first order ap­
proximation are readily obtained from (30), (31) and (34), (35), respectively, by discarding
those components e\'p, e\'? and U)nJ for which n> 1. The displacement equations of motion
of the first order theory can be obtained by inserting the stress-displacement relations
into (51). Thus for the flexural motion, a 1,3:

1IV2ul0)+~ e(I)+!F(Ol = !!...-u(Ol
r 2 bIb 2 (J.2 2,ft

(
n ) 2 2p, 11IV2u(l)+(2+ 11) e(l)-1I - u(l)-----,----a u(O) +-F(I) = pu(1)

r a r,a r 2b a b 1 2,a b a a,ft

and for extensional motion, a = 1,3:
22 1

1IV2u(O) + (2 + 11) e(O) + -(J. u(l) + _F(O) = pu(O)
r a r,a b I 2,a b a a,tt

(
n)2 22 11I(J. V2u(ll-(2+211) - ull)----::-QC e(O)+-F(l) = pull)

r 2 2 r 2b 2 bIb 2 2,tt'

Equations (52) and (53) are equivalent to Mindlin's first order plate theory [1]. Similar
equations for flexural theory (52) were obtained by Mindlin [6], Uflyand [7], Reissner
[8,9], Timoshenko [11, 12J and Bresse [IOJ, while equations similar to (53) for extensional
theory were obtained by Kane and Mindlin [13].

In the flexural equations of the first order approximation (52), one may consider
straight-crested free waves by setting

F~OJ = F\l) = F~I) = 0

and obtains the dispersion relation, in dimensionless form, as

= 0,
4

(J.1-Z
n

(54)



An approximate theory for high-frequency vibrations of elastic plates

Expanding the above and setting z = 0, one finds

Q = 0, 1.

595

The second root Q = lor W = W t = 1w2/2b is the resonant frequency of the lowest simple
thickness-shear mode and also the "exact" cutoff frequency at zero wave number for the
second flexural branch.

For Q « 1 and Izl < 1, (54) reduces to

In order to have z = °as Q approaches zero, one must set

Then Q = k(X~/2Z2 which, however, does not agree with the limit Q = z\/[(l- k- 2)/3J
from three-dimensional theory. Therefore, the lowest flexural branch has the correct
slope but incorrect curvature at Q = °and z = °if (X t is set equal to n/4.

For Q > 1 and z > 1, the phase velocity of the lowest flexural branch approaches,
from (54), the value

Hence the phase velocity of the lowest flexural branch will approach that of the Rayleigh
surface waves, the exact value, if (X2 is set equal to the values given in Section 5.

The dispersion curves for the first order flexural theory are computed and compared
with those from the Rayleigh-Lamb frequency equation as shown in Figs. 3(aHc). It
can be seen that the two sets ofcurves match quite well for Q :-::;; 1·5; the incorrect curvature
at Q = 0, z = °appears to have no observable effect upon the numerical values.

By setting, in (52), F~n) = °and

one obtains

which agrees with the exact result for face-shear vibrations in the three-dimensional theory.

Second order theory

Following the truncation procedure described in Section 5 by setting N = 2 in (25),
the energy densities for the second order theory are

(55)
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FIG. 3. Dispersion curves for the first order flexural theory.
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and the stress equations of motion are

597

(56)

The stress-strain relations and stress-displacement relations are given by (30), (31) and
(34H36), respectively, with strain and displacement components of orders higher than two
discarded. By direct substitution, the displacement equations of motion of the second
order theory are obtained; for flexural motion (a = 1,3):

(57)

and for extensional motion (a = 1,3):

2A. 1
IIV2u(O) + (A. + II) e(O)+-1X U(l) +_p(O) = pu(O)
,.. a "',a b 1 2,a b a a,tt

(58)

Equations (58) are equivalent to Mindlin and Medick's [14] extensional plate equations
of second order approximation and are closely related to Reissner's equations of equilib­
rium [23] for plates.

Consider straight-crested waves propagating in the Xl direction by setting

u~O) = 0
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in (58), then the dispersion relation is obtained as

4 2
(Xl-(k -2)z

n °
4 2

(Xl -(k - 2)z
n

4 2
--(k +2)z = 0.

3n

° _~(k2+2)z
3n

At z = 0, (59) gives the "exact" cut-off frequencies

n = 0, k,2.

When both z and n « 1, (59) reduces to (48), the "exact" limit, if (Xl = n/4. For z > 1 and
n > 1, one finds from (59) that the phase velocity of the lowest extensional branch ap­
proaches the value

n v
~ = ~ = (X2
Z V2

which, according to Section 5, is the phase velocity for Rayleigh surface waves and also the
"exact" limit of the phase velocity for the lowest extensional branch as both nand z
become large.

The dispersion curves are presented and compared with the results from three-dimen­
sional theory in Figs. 4(a)-{c).

Q
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FIG. 4. Dispersion curves for the second order extensional theory.
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At this point one may see that the same value, IX 1 = n/4, is used for correcting the slopes
of both the lowest flexural and extensional branches at n = 0, Z = °and the same value
for IX2 is used for correcting the phase velocities of the same two branches when the values
of nand z become large. No additional correction is needed in the higher branches in the
subsequent higher order theories as will be seen in the following subsections.

For face-shear vibrations (58) yields, in a similar manner, the exact results

n = 0,2.

Third order theory

Energy densities:

2U-(3) = ~~9)o!0) + ~!l)o!~) + ~P)o!~) + ~(l);;~~) + ;;:~~);;P)
-'l "Il -'l "Il ... -'l "'Il -'l "Il ... -'l "Il

2[(3) = p(IXi Pul~)ul~) + ulYu~Y+ ... ug)ug»).

Stress equations of motion:

(60)

(61)

(n) +nn -In) 1F(n) _ (n)
Tij,i 2b T2j +b j - pUj,tl' n = 1,2,3.

(62)

The stress-strain relations and stress--displacement relations are given by (30H31) and
(34H37), respectively, with components of strain and displacement of order higher than
three discarded.

Displacement equations of motion (for flexural motion, a = 1, 3) :

/1V2u(0) + 2/1 IX e(l)+ 2/1 e(3)+~F(0) = ~u(O)
2 bIb b 2 IX

2
2,tt

/1V2u(l)+(A+/1)e(l)-/1(~)2u(1)- 2/1 IX u(O) + 2(4A+/1)U(2)+F~1) = pull)
a ,a 2b a b 1 2,a 3b 2,a b a,tt

V2 (2)_(A 2 )(~)2 (2)_ 2(4A+/1) (1) 2(4A+9/1) (3) F~2) _ (2)
/1 U2 + /1 2b U2 3b e + 5b e + b - pU2,tt

V2 (3) (1 ) (3) _ (3n) 2 (3)_ 2/1 (0) _ 2(4A, + 9/1) (3) F~3) _ (3)
/1 Ua + JI.+/1 e,a /1 2b Ua b U2,a 5b U2,a+ b - pUa,tt·

For extensional motion (a = 1,3):

2A, 2A, F(O)
/1V2U(0) + (A, +/1) e(O)+-IX U(l) +_U(3) +_a_ = pU(O)a ,a b 1 2,a b 2,a b a'tt

(
n)2 2A 2(A,+4) 2(A+16) F(l)

/1IX V2U(l)-(A,+2/1) - U(l)--IX e(O)+ /1 e(2)+ /1. e(4) +_2_ = pUll)
2 2 2b 2 b 1 3b 15b b 2,tt

( )

2 (2) (63)
V2 (2)+(A+ ) (2)_ ~ (2)_ 2(A + 4/1) (1) + 2(9A, + 4/1) (3) + Fa _ (2)

/1 Ua /1 e,a /1 2b Ua 3b U2,a 5b U2,a b - pUa,tt

V2 (3) _ (1 2) (3n) 2 (3) _ 2A, (0) _ 2(9A, + 4/1) (2) F~3) _ (3)
/1 U2 It. + /1 2b U2 b e 5b e + b - PU2,tt·
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By setting Fr) = 0, u~1) = U~3) = 0 and employing

in (62), one obtains the dispersion relation as

601

Z2_ OC .zlQ2
4 4

OCl-Z 0 -z
n n

4
k 2z2+ l_Q2 4 2 0OC1-Z --(4k -7)z

n 3n
= O.

4 2 z2+4k2_Q2
4

0 --(4k -7)z 5n(4k
2

+ l)z
3n

4 4 k2z2+9_Q2-z 0 -(4k2+ l)z (64)
n 5n

Dispersion curves computed from (64) and those from three-dimensional theory are
presented in Figs. 5(aHc). It can be seen that the lower branches match with the "exact"
curves better than the corresponding ones in the first order flexural theory, since the higher
order theory not only accommodates additional branches at higher frequencies but also
improves the accuracy for the lower branches. The behavior of the complex branch varies
with the values of Poisson's ratio. The discrepancy for the complex branch is mostly due
to the difference in the real parts. The matching for the imaginary parts is very close. The
mode shape corresponding to a complex wave number can be expressed as the product
of a trigonometrical function (depending on the real part of the wave number) and a
hyperbolic function (depending on the imaginary part of the wave number). Hence the
mode has the shape of an oscillatory variation within the envelope of the hyperbolic
function. Therefore in the case of matching the complex branches it is more important to
have a close agreement of the imaginary parts than of the real parts, since the former control
the amplitude of the mode.

As for the SH waves, in a similar manner (62) yields the exact results

Q2 = Z2+ n2, n = 1,3.

Fourth order theory

Energy densities:

2-U(4) - ",\<!)c\<!)+r\l)eq )+ +r\~)e\~)+i\l)iW
- • 'J "'J 'J 'J . . . 'J 'J 'J 'J

+ .;:\~)~\~) + + .;:\'!-)~'!-)
"J <-'J • • • "J "'J

2K(4) = p(oc-Pul0)u\O)+U\l)U\l)+ '" +U\4)U\4)).
2 l,t l,t l,t l,t l,t l,t

Stress equations of motion:

(65)

1
r\<!)·+-F\O) = poc-pu\O)

'J.' b J 2 J.lt

(n) nn -In) + 1F(n) _ (n)
rij.i+ 2b r2j b j - pUj,tt> n = 1,2,3,4.

(66)
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The stress-strain relations and stress-displacement relations can be obtained from (30), (31)
and (34H38), respectively, with components of strain and displacement of order higher
than four discarded.

Displacement equations of motion (for flexural motion, a = 1, 3) :

"V2u(O)+ 2J.1.!X e(1)+ 2J.1. e(3)+!F(O) = !!-u(O)
,.. 2 bIb b 2 !X2 2.11

V2 (2) (A. 2 )(1r.)2 (2) 2(4A.+J.I.) (1) 2(4A.+9J.1.) (3)
J.I. U2 - + J.I. b U2 - 3b e + 5b e

(67)

1+_F(2) = pU(2)
b 2 2,1l

(
31r.)

2
2"V2U(3)+(A.+ ")e(3)-" _ U(3)_-!!:U(O),.. a ,.. ,a ,.. 2b a b 2,a

2(16A.+9J.1.) (4) !F(3) _ (3)
+ 7b U2,a +b a - PUa,1l

2(4A.+9J.1.) (2)
5b U2,a
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2(A+4fl) (1) 2(9A +4fl) (3)

3b U 2 ,a + Sb UZ,a

flV2U~4)_(A+2fl)(2;)2U~4)_ 2(1~~:fl) e(l)

= pu~~1t'

For extensional motion (a = 1, 3):

v2 (1) (' 2)( n)2 (1) 2A (0) 2(A +4fl) (2) 2(A+16fl) (4)
fl!'J.2 U2 - Ic+ fl 2b U2 -b!'J. 1 e + 3b e + ISb e

1+_p(1) = pu(1)b 2 2,tt

flV2ul2)+ (A +fl) e~;) - fl(~) 2 ul2)

1+_p(2) = pU(2)b a a,tt

n2 (3) (1 2 )(3n)2 (3) 2A (0) 2(9A+4fl) (2) 2(9A+ 16tt) (4)flY U2 - 11.+ fl - U2 --e - e + e
2b b Sb 7b

1
+_p(3) = pu(3)b 2 2,tt

V2 (4) (A ) (4) (2n) 2 (4) 2(A + 16fl) (1) 2(9A + 16fl) (3)
fl Ua + + tt e,a - fl b Ua - ISh U2,a- 7b U2,a

1+_p(4) = pU(4)b a a,tt'

By setting p}n) = 0, u~O) = U~2) = U~4) = 0 and employing

uiO) = AiO) ei(~XI-Wt), ui2) = Ai2) ei(~Xl-wt), ui4) = Ai4) ei(~Xl-wt)

u~l) = _iA~l)ei(~Xl-wt), U~3) = _iA~3)ei(~XI-WI)

in (68), one obtains the dispersion relation for extensional motion as

(68)

k2z2_02 4 2 0
4 2 0!'J. 1-(k -2)z ~(k -2)z

n n

4 Z k2+!'J.2Z2 _02 -4 -4
!'J. 1;(k -2)z ~(k2+2)z 0 15n(e+14)z

-4
k2z2+4-02 4 2

0 };(k2+2)z -(9k -14)z 0 = O.
5n

4 2 4 2 9k2+Z2_02 -4
-(k -2)z 0 -(9k -14)z -(9k2-2)z (69)
n 5n 7n

-4 -4
k2z2+16-020 15n(k

2
+14)z 0 -(9k2-2)z

7n
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Dispersion curves computed from (69) are compared with the exact ones as shown in
Figs. 6(aHc).

For SH waves in an infinite plate, the dispersion relation obtained from (68) is

0 2 = Z2 +n2
, n = 0,2,4

which agrees with the exact results.

7. GENERATION OF HIGHER ORDER DISPERSION RELATIONS

It has been demonstrated that by the truncation procedure given in (25) one may
generate an Nth order approximate theory (any N > 0) for plates in a systematic manner
and no additional correction coefficients, aside from !X 1 and !X 2 , being needed for any
higher order theory. For the Nth order theory the dispersion relation for straight-crested
wave propagation in the x 1 direction may be obtained by substitution of appropriate wave
form solutions into the displacement equations of motion in a straightforward manner.
However, when the order N is large, the process becomes tedious. A general method for
generation of dispersion relation for an Nth order theory is described as follows.

By inspecting dispersion relations (54) and (64) for the first and third order flexural
theories, respectively, one may observe that the determinant of the matrix of the frequency
equation is symmetric, and its elements may be classified into four groups: Amn , Bmn for
elements on the main diagonal and Cmn , Dmn for elements off the diagonal. In terms of

I} =0.25

5
z(re)

(0)
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FIG. 6. Dispersion curves for the fourth order extensional theory.
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A mn , Bmn , C mn and D mn , the dispersion relation of an Nth order flexural theory can be
written as

n

0 2 3 4 5 N

0 Boo DOl 0 D 03 0 Dos DON

All Cl2 0 C 14
0 0

2 B22 D 23 0 D 2S D 2N

m 3 A 33 C 34 0 0 = o.
4 B44 D 4S D 4N

(70)

5 Ass 0

N ANN

Similarly, by inspecting (59) and (69) of the second and fourth order extensional theories,
respectively, one may write the dispersion relation of an Nth order extensional theory as

n

0 1 2 3 4 5 N

0 A oo COl 0 C 03 0 Cos 0

Bll Dl2 0 D 14 0 D 1N

2 A 22 C 23 0 C2S 0

m 3 B 33 D 34 0 D 3N = o.
4 A 44 C4S 0

(71)

5 B ss D 3N

N ANN

(72)

(m = n)

(m = n)

In (69) and (70), only half the off-diagonal elements are shown due to their symmetry
property, and the non-zero elements are

A mn = k2z 2 +m2 _f.l2,

- 4 2 2 2
Cmn = + (2 2)[n (k -2)+m ]Z, (m #- n, m+n = odd)

1C n -m

4 2 2 2
Dmn = + (2 2)[m (k -2)+n ]Z, (m #- n, m+n = odd)

1C n -m
where 0 ::;; m, n ::;; N for any integer N > 0 and in the last two equations of (72) the upper
sign is applied to the flexural theory and the lower sign to the extensional theory. By (72)
one may generate elements of the determinant of either (70) for flexural theory or (71) for
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extensional theory to any order N, except Boo, B11 , COl and DOl' in which ell and el2 are
introduced as follows

Boo = Z2_ Ct .zlQ2

4 2
COl = 1X1-(k -2)z,

n

(73)

Dispersion relations Jor the fifth order flexural theory and the sixth order extensional
theory are generated by this method, and they verify the results obtained by the usual
process. The dispersion curves are computed and compared with the "exact" results as
shown in Figs. 7(aHc) for the fifth order and in Figs. 8(aHc) for the sixth order theory. It
may be seen that all frequency branches for real, imaginary and complex wave numbers
are reproduced and are in good agreement with the exact ones except the highest branch
for which the complex conjugate roots, for certain values of v, are replaced by two distinct
imaginary roots. Since in these cases the magnitude of the real part is small compared to
that of the imaginary part, this difference means that the mode shape of a slow oscillatory
variation enveloped by a hyperbolic function is approximated by a hyperbolic function.

8. CONCLUSIONS

By an expansion in series of simple thickness-modes, two-dimensional equations of
successively higher orders of approximations are derived in a systematic manner. The
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FIG. 8. Dispersion curves for the sixth order extensional theory.
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close agreement of the dispersion relations for both flexural and extensional vibrations
with the results from the three-dimensional theory of elasticity indicates that the applicable
range of frequencies for an Nth order theory can be set at n ::;; N +!. As for SH waves or
face-shear vibrations in an infinite plate, the approximate equations always yield the exact
dispersion relations.

Theorems of uniqueness and orthogonality can be established for each order ofapproxi­
mation in a similar manner to that for the case of an infinite set of equations as given in
Section 3, if in addition to the usual requirements 3), +2Jl > 0, Jl > 0, one requires that
C(z > 0.
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A6cTpaKT-J.11 TpexMepHoH TeopHH ynpyrocTH BbIBOA~TC~ AByxMepHble ypaBHeHH~ nOCTenHHO BblCWHX
nopSiAKOB npH61lHlKeHH~ AnSI ynpyIHx, H10TponHbix nllacTHHoK, nyTeM pa1nolKeHHSI B pSlAbl BblpalKeHHH
npocTbIX BHAOB BonH cABHrOBOIO THna AnSI 6eCKOHe'lHOH nnaCTHHKH. )]Il~ KalKAOH CTeneHH npH6IlHlKeHHSI,
OT HyneBoro AO '1eTBepToro, onpeAellSiIOTcSl nnOTHocTH KHHeTH'IeCKOH 1HepIHH H 1HeprHH Ae(jlopMal\HH,
1aBHCHMOCTH AIlSI nOIlSi HanpSllKeHHH H Ae(jlopMaLtHH, a TaKlKe ypaBHeHHSI ABHlKeHHSI B nepeMeWeHHflx )l,nfl
Kone6aHHH H1rH6a H YAIlHHeHHfl.

)]nfl 6eCKOHe'lHOH nllaCTHHKH cneAYIOTCfl nOllpo6HO KpHBbie )l,HCnepCHH, KaK AIlSI AeHCTBHT6JlBHbIX,
TaK H )l,IlSI MHHMblX '1HceJl Boml H cpaBHHBaIOTC~ C ypaBHeHHeM '1aCTOTbl Pellefl-JlaM6a BTpeXMepHOH
TeopHH.


